Safety Training International

Online OSHA Training & Workplace Safety

How to Use Webinars for Successful Training

Employee training is a task that usually comes under the supervision of managers. Each division, whether accounting, advertising, sales or customer service has needs specific to the service they render for the company. You need training seminars that teach the skills necessary for your employees to become more productive in their jobs, and that help foster collaboration and communication. One delivery option that provides flexibility in training are webinars. Webinars can be your key to developing leadership skills in your workplace.

A training Webinar is an online seminar. You log on at a particular time, and you will get to see a seminar on the Internet. Many training seminars are offered with a telephone number included, so that you can also call in and have an opportunity to interact with the trainer.

Online classes or webinars offer several advantages to in-person presentations. You are not limited to only local speakers for one. Nationally recognized trainers are available because with Internet access you are no longer limited by geography. An Internet presentation can be much more cost effective when you wish to have trainers give a presentation, but they live across the country from your offices and getting them there would make the training too cost prohibitive. Anyone with Internet access can participate in a webinar.


Many managers appreciate the flexibility that comes with webinar presentations. You can provide a specialized training for a select group of employees, or even individual trainees, or you can train a large group when you use an online training. A computer hooked to a projector and an amplified speaker telephone makes online seminars for large groups a snap. Training in a group setting also has the added benefit of facilitating greater collaboration and communication among employees, an excellent result when teams use the skills learned at the seminar to more effectively function in a small-group dynamic.

Employees who are receiving the training get much more out of a presentation that has been not only presented live, but is also recorded. Most educational experts agree that learning is best accomplished in a circular rather than a linear manner. A student needs to take in a new idea more than once for it to become permanently ingrained. Unlike a live presentation where you see it one time, material can be repeated as many times as desired when it is recorded and available to your employees online. Employees can then learn at their own pace, an added boon to increasing the effectiveness of the delivery method for all employees.

All of the different learner types can be well accommodated through the webinar delivery method. People who learn by listening, watching or doing themselves will have ample opportunity to learn with webinar training.


December 31, 2008 Posted by | Business, Economy, Education, Health & Safety, OSHA Compliance, Uncategorized | , , , , , , , , , , , , , , , , , , | Leave a comment

Safety update: OSHA announces fit-test procedures

Fabricators as well as other workers may be required to use respirators to protect themselves from inhaling fumes, particles, or dust when performing cutting, grinding, welding, coating, or painting, especially if they are in contact with chrome-containing stainless steel or coatings, which presents the risk of hexavalent chromium exposure.

In cases such as these, respirators must be provided to protect the health of a worker and be selected on the basis of hazards the worker is exposed to. Employers are responsible for establishing and maintaining an effective respiratory protection program, which includes fit-testing for all employees who are required to use one.

The Occupational Safety and Health Administration (OSHA) is looking at fit-testing again, this time with a proposal to add a new fit-test method to its existing standard. The following is a review of the current requirements.

Current OSHA Fit-test Proceduresresp2

Anyone using a negative- or positive-pressure, tight-fitting facepiece respirator must pass an appropriate fit-test that uses an OSHA-accepted protocol. Fit-testing is required before initial use, whenever a different respirator facepiece is used, and at least once a year thereafter. An additional fit-test is required whenever a change in the wearer’s physical condition, such as facial scarring, dental changes, cosmetic surgery, or a significant change in body weight, could affect respirator fit.

A few basic checks must be performed even before using test protocols. The wearer should check for proper chin placement and strap tension, but be sure not to overtighten the respirator. He should make sure it fits correctly across the nose bridge—a respirator should span the distance from nose to chin—and that it doesn’t slip. Along with evaluating fit and respirator position, the wearer also should perform a seal check. If leakage is detected from a poorly fitting facepiece, he needs to try another size of the same model, or another model of respirator.

The workplace exposure level determines what constitutes an acceptable fit and which OSHA fit-test procedure is required. The two types of fit-test methods are qualitative and quantitative.

Qualitative methods rely on a subjective sensation, such as taste, irritation, or smell, to a particular test agent. These test agents include isoamyl acetate, saccharin, Bitrex®, and irritant smoke. Essentially, the wearer puts on the respirator and enters a test chamber. The test agent is then released, and the wearer must determine whether or not he can smell, taste, or feel the agent inside of the respirator during a series of defined exercises.

Quantitative methods use instruments to measure face seal leakage. These protocols are more complex and thorough because they are not dependent on the wearer observing and reporting the presence of a test agent. These protocols are:

1. Aerosol generated from corn oil, salt, or DEH: The wearer enters a test chamber that is isolated from the outside air. A sampling port or probe is inserted into the respirator, and an instrument is used to create a computer record or strip chart showing the rise and fall of the test agent concentration with each inhalation and exhalation. Whenever the concentration inside the mask exceeds 5 percent for half masks, and 1 percent for full-facepiece respirators, the test subject must be refitted and retested. The fit factor is determined by the ratio of the average chamber concentration to the concentration measured inside the respirator for a series of test exercises.

2. Condensation nuclei counter (PortaCount™). This protocol uses a probe with a special sampling device installed on the respirator that samples the air from inside the mask. A probed respirator is required for each make, style, model, and size that the employer uses. These can be obtained from the respirator manufacturer or distributor. Alternatively, the manufacturer also provides probe attachments (TSI sampling adapters) that permit fit-testing in an employee’s own respirator. A record of the test needs to be kept on file, assuming the fit-test was successful.

3. Controlled negative pressure (Dynatech FitTester 3000). This protocol measures leak rates through the facepiece of negative-pressure respirators. To perform the test, the subject closes his mouth and holds his breath, after which an air pump removes air from the respirator facepiece. The facepiece fit is the leak rate through the facepiece, expressed as milliliters per minute. CNP systems have built-in capability to conduct fit-testing that is specific to a work rate, mask, or gender.

For negative-air-pressure purifying respirators, users may rely on either a qualitative or a quantitative fit-test procedure for exposure levels less than 10 times the occupational exposure limit. An exposure level greater than 10 times the occupational exposure limit requires a quantitative fit-test procedure. Requirements for respirators used to protect wearers from certain airborne contaminants, such as asbestos, have their own special fit-test requirements.

Proposed Fit-test Requirement

OSHA’s current proposal is to include an abbreviated Bitrex qualitative fit-test in its respiratory protection program. This emphasizes that OSHA is again focusing on protection programs in workplaces where respirators are required to ensure employee safety and health.

If you need help with your Fit Testing Program, contact one of our Safety Specialists.

December 10, 2008 Posted by | Business, Economy, Education, Health & Safety, OSHA Compliance, Uncategorized | , , , , , , , , , , , , , , , , | Leave a comment

Proper guarding protects workers: Six steps to focusing on your employees’ needs

When people think of machine guarding, usually they think of devices to protect people from the moving parts on machinery.

When people think of machine guarding, usually they think of devices to protect people from the moving machineguardsparts on machinery. While this is clearly one use of machine guarding, another area involves protecting workers from all types of cutting, welding, or grinding that can take place in tube or pipe cells.

Flying debris, weld flash, and other dangers make machine guarding an important component in the overall safety of a facility. But how do you choose the proper machine-guarding devices for your facility?

Because machine-guarding devices can do more than improve safety, it’s important to understand the different types of machine-guarding options available. Properly applied devices can help improve workcell productivity, help eliminate ergonomic concerns, and improve the overall efficiency of a facility.

Because the amount of information on machine-guarding systems can be overwhelming, you’ll find it easier first to examine closely your specific applications and needs. And, you can do it in just six steps.

One—Keep Safety First

Safety is the primary goal of any machine-guarding device, and you must look closely at safety in your work area. Are you concerned about flying debris, or do you simply want a process to stop when a person enters the work area? Are you concerned about weld flash? Is an automated process occurring in the cell? Consider all these issues before choosing a solution. When considering your machine-guarding options, always keep safety as your first goal.

Two—Evaluate the Cell Process

Pay close attention to how materials are moved in and out of a workcell, and evaluate how a machine-guarding device could help or hinder that process. Can you use fixed devices, or are movable barriers necessary? Is automated equipment used, or does the application rely on people to complete the process? Look for opportunities to improve both productivity and safety.

Three—Determine If a Physical Barrier Is Required

While the term “machine-guarding device” implies that a barrier exists, not all devices provide a physical barrier to help protect employees from harm. Typically, you would use a physical barrier if flying objects are present that could harm employees. This includes the weld flash and debris from cutting or grinding that are common in tube or pipe cells.

Four—Improve Productivity

If you want to improve your facility’s productivity, the type of machine-guarding device you choose may have a direct impact. For example, an automated device can significantly improve workcell productivity versus a manual device, which requires a person to complete the operation.

Five—Determine If Automated Material Handling Devices Are Needed

While you might improve productivity by using a forklift to move objects in an operation, you could slow down productivity if an operator must exit that forklift to manually remove a machine-guarding device before entering a cell. This holds true for overhead cranes and conveyors as well. The productivity benefits realized by material handling devices will be lost by the human intervention required in the process.

Six—Define Ergonomic Concerns

workshopErgonomic problems can arise from the repetitive motion of opening or closing a manual machine-guarding device, even if the operation is done properly. Count the number of times this operation must take place on one of your machines and multiply the total by the number of work days a year.

An operation performed just a dozen times a day will add up to 3,120 times in a 260-day work year. Evaluate your own operation and talk to your employees to determine if a potential exists for ergonomic problems.

Range of Choices

Once you understand the issues to consider, you then can look at the variety of devices available with a better understanding of your needs to determine the best solution for your operation. You’ll find you have a number of options.

Nothing. You might find this hard to believe, but many facilities do not offer any protection to their employees. This can be a dangerous decision, as unprotected work processes may result in flying debris or weld flash, which can cause serious injuries.

Fixed Solid Guarding. The obvious benefit of a solid guard is that it provides a barrier between personnel and a hazard. This is ideal if you want to prevent access to a workcell completely. Unfortunately, because these devices are fixed and unmovable, they can hinder productivity if objects must move in and out of a cell.

Fixed guards are recommended for use around a workcell, but consider other guards for the opening, where material or an operator must move in and out.

Fixed Fencing. Although fixed fencing may seem to have the same benefits as a fixed solid guard, it doesn’t protect from flying objects or flash. A fence does a good job of preventing access to a cell, but it isn’t recommended for welding, grinding, or cutting areas, which are prone to flying debris. Again, fixed fencing is recommended for use around the workcell, but another device should be considered for the opening of the cell.

Safety Mats. Safety mats are used to stop an automated activity, such as welding or cutting, when a person steps on the mat. The mat sends a signal to the machine to stop, which protects the person from the potential hazards of the operating machine.

While safety mats are useful in preventing a person from getting too close to an automated process, they don’t provide a physical barrier. And, though safety mats are automated, they can hinder productivity.

If people working around a cell step on the mat several times a day, the automated operation stops that many times, so safety mats often are used with other machine-guarding devices such as a physical barrier.

Online OSHA Courses

Light Curtains. These curtains use light beam technology to provide an invisible barrier to the hazards inside a workcell. When the light beam is broken, the automated activity inside the cell stops.

Unfortunately, the barrier is invisible, so it doesn’t provide a physical barrier to hazards. In addition, light beam technology can be unreliable in dusty or dirty environments, causing false signals. A dirty light curtain may imitate the effect of a broken beam and stop the operation.

Manual Curtains and Barriers. Manual curtains and manual barriers provide a movable physical barrier between personnel and the hazard. This can be considered an advantage over fixed barriers, which can hinder productivity, and over light curtains and safety mats, which do not provide a physical barrier. Manual devices include rollup curtains, sliding curtains, and sliding hard panels.

The greatest limitation of manual barriers is that they require human intervention to open them and stop the automated operation in the cell. This human operation not only can slow productivity, but raises safety concerns if operators don’t follow proper procedures.

To protect employees, safeguards must be in place to prevent them from opening the curtain before the automated activity stops. And, ergonomic issues could arise from the repetitive action of opening and closing the curtain or barrier, depending on how much effort is required.

Automated Machine-guarding Systems. The latest development in machine-guarding devices is machine-safetyautomated systems, which offer the benefits of the other devices, without the disadvantages. Automated solutions include rollup curtains and barriers, pneumatic sliding curtains, and bottomup hard panel devices, which are custom-made to fit specific application requirements.

These systems provide a physical barrier between personnel and hazards and are connected to the automated activity in the cell for reliability and safety. This means the barrier won’t open unless the activity in a cell has stopped, and the activity won’t begin until the barrier is closed.

Automated systems also work well with material handling equipment, such as forklifts, overhead cranes, or conveyors. The machine-guarding system can open automatically without the need for human intervention. This complete automation of the cell process can help improve a facility’s productivity and safety, and can help eliminate the ergonomic concerns associated with manual devices.

By installing the proper machine-guarding solutions for your operation, you can improve safety and productivity, while lowering long-term costs. By doing your homework first to determine what your needs are and what options you have, you’ll be able to save yourself time, effort, and money and provide effective safety measures for your employees.

December 3, 2008 Posted by | Business, Economy, Education, Health & Safety, OSHA Compliance, Uncategorized | , , , , , , , , , , , , , , , , , , , , | 1 Comment